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$ Department of Physics, University of Tasmania, Hobart, Tasmania 7001, Australia 
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Abstract. We introduce the concept of ‘graded permutation group’ in the analysis of tensor 
operators in the classical superalgebras. For U(m/n)  and SU(m/n) ,  irreducible tensor 
representations correspond to classes of Young tableaux with definite graded symmetry 
type. Diagram techniques are given for Kronecker products, dimensions, and branching 
rules such as U(m + w / n  + v )  3 U(m/n)  x U(w/v) and U(mw + nv/mv + n w )  3 U ( m / n )  x 
L J ( P / V ) .  

The tensor techniques are complemented by the introduction of a superfield formal- 
ism, in which U(m/n)  and SU(m/n)  act on (polynomial) functions over the appropriate 
superspace. Such superfields may admit constraints. A general superfield interpolates 
between the classes of Young tableaux which correspond to particular types of constraint. 
The tensor and superfield techniques are illustrated with case studies of SU(2/1)  and 
S U ( m / / l ) .  

1. Introduction 

The motivation for an investigation of the superalgebras or graded algebras stems 
ultimately from the realisation of their widespread application in mathematics and 
physics (Corwin et a1 1975). The present work is a contribution to the study of the 
representations of the classical superalgebras, in particular U ( m / n )  and SU(m/n). It is 
aimed at making available a range of techniques which are well established for the 
classical Lie algebras, and readily suited to applications, but which hitherto have been 
somewhat neglected in the superalgebra case. These techniques are the complemen- 
tary ones of tensor and differential (or superfield) realisations. 

In the subject of supersymmetry in space-time (for a review, see Fayet and Ferrara 
1977), the early work (Ferrara et a1 1974, Salam and Strathdee 1974) has been 
traditionally concerned with superfield formulations for the Poincark superalgebra and 
its N-extended generalisations (Dondi 1975, Salam and Strathdee 1975), with some 
attention to the conformal (Dondi and Sohnius 1974), and de Sitter (Keck 1975) cases, 
and other non-superfield studies of the unitary representations in the PoincarC case 
(Jarvis 1976, 1977, Grisaru 1977). 

With the advent of the supergravity theories (for a review, see van Nieuwenhuizen 
and Freedman 1979), there has been increased incentive for the study of the represen- 
tations of the N-extended PoincarC superalgebra (Fayet 1976, Sohnius 1978), and 
construction of the corresponding superfields. The superfield representations of the de 
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548 P H Dondi and P D Jarvis 

Sitter superalgebra and its extensions (Keck 1975, Ivanov and Sorin 1979, 1980) are 
important for the formulations of extended supergravity constraints (Gates et a1 1979). 

Recently, the possibility of using an internal superalgebra as a gauge symmetry has 
been investigated (Wouthuysen 1978, Ne’eman 1979, Fairlie 1979, Dondi and Jarvis 
1979, Taylor 1979a). Candidates such as SU(5/1) have also been considered (Dondi 
and Jarvis 1979, Taylor 1979b, c); a knowledge of the irreducible representations of the 
superalgebras has naturally been required for these applications. Some preliminary 
results of the present work have been given elsewhere (Dondi and Jarvis 1980). 

In parallel with such physical applications, the mathematical theory of Lie super- 
algebras has been developed considerably (Kac 1977, Scheunert 1979 and references 
therein; for a review, see Rittenberg 1978). The representation theory has been studied 
from the point of view of the general theory, and of simple examples such as s1(2/1) and 
osp(l/2) (Scheunert et a1 1977, Marcu 198Oa, b), or osp(l /n)  (Corwin 1976, Bednar 
and Sachl 1978). Issues such as the existence of the characteristic identities for 
gl(m/n), sl(m/n) and osp(nt/n) have been followed up (Jarvis and Green 1979). 

Nonetheless, a unified treatment of the tensor representations, of the sort familiar 
from many standard texts for the classical Lie groups (Weyl 1939, Hamermesh 1962), 
has not been given before. In the present paper (concentrating here on U ( m / n )  and 
SU(m/n)),  we show that the concept of a tensor representation is possible in the 
superalgebra case, and that the usual connection between symmetrised tensors of rank r 
and the permutation group on r symbols continues to hold, with due allowaiices for 
modifying sign factors arising from the grading. Therefore, for a large class of represen- 
tations, the usual S-function (or Young diagram) techniques for Kronecker products, 
branching rules, dimension formulae, plethysyms, and so on, which re!y solely on the 
nature of the permutation group, can be transferred (with suitable modifications) to the 
graded case ( Q  2). The work relies heavily on Jarvis and Green (1979) for the basic 
tensor operator formalism (for the gl(m/n), sl(nz/n) and osp(m/n) cases); a similar 
formalism can be developed for the remaining classical superalgebras p(m) and q (m) ,  
and will be given elsewhere. 

These tensor techniques are complemented by the development of a corresponding 
superfield formalism (8  3).  As usual, the basic ingredients are the little group (the even 
part of the superalgebra, for example U(m) x U(n)), and the corresponding coset space, 
or superspace. Superfields are functions over superspace taking values in the carrier 
space of a representation of the little group, and on which the whole supergroup acts 
(see, for example, Dondi and Sohnius 1974). This action may in general be decom- 
posed by applying certain constraints, some of which are shown to correspond to the 
classes of irreducible symmetrised tensors. In general, however, the superfields inter- 
polate between the irreducible tensor representations. 

Sections 2 and 3 end with a discussion of SU(m/ l )  and a case study of SU(2/1), 
where both the irreducible tensors and constraints are easily found, and can be 
compared with results in the literature (Scheunert eta1 1977, Marcu 1980a, b). Further 
comments and concluding remarks are made in § 4. 

2. Graded Young diagrams 

The concept of a tensor representation in the classical superalgebras follows naturally 
from the tensor operator formalism of Jarvis and Green (1979), which we summarise 
here for convenience. 
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The (m + n)’ generators of gl(m/n) or U(m/n)  satisfy the commutation and 
anticommutation relations 

where A, B, . . . = 1,2 ,  . , , , m +n.  Here indices in the range a, b, . . = 1, . . . , m are 
called ‘even’, and assigned a grading (a) = (b) = .  . . = 0, and indices in the range 
a, p = m + 1, . . . , m + n are called ‘odd’, and graded ( a )  = ((3) = . . . = 1. A generator is 
‘even’ or ‘odd’ according to its index structure: thus EAB is graded ( A )  + ( B )  = ( A  + B ) ,  
while the bracket of EAB and ECD becomes an anticommutator whenever ( A  +B)(C  + 
D )  = l(mod 2), as expressed by the sign factor [:SI = ( - l ) ( A + B ) ( C + D )  . General sign 
functions of several indices are simiarly interpreted as a product of column sums in the 
exponent. 

If m f n, the ( m  + n)* - 1 generators defined by 

with summation on repeated indices, satisfy the same superalgebra as gl(m/n), and 
generate the simple subalgebra sl(m/n) or SU(m/n).  If m = n, the gl(m/n) formalism is 
unchanged, but the above definition of the sl(m/n) generators is inapplicable. 

The commutation and anticommutation rules (1) and (2) suggest that a vector 
operator, say Xc or X c ,  can be defined by the following transformatior, laws: 

and similarly by considering X A 1 X A 2 ,  X A 1 X A z X A 3 ,  . . . , a (contravariant) tensor 
operator of arbitrary rank will transform as 

The tensor operators define finite-dimensional matrix representations of gl(m/n) when 
the right-hand sides of the transformation rules are rewritten as 
xxYz ( E ~ ~ ) ~ ~ ~ . . . ~ ~ ~ . . .  . For example, the matrices ( E A ~ ) X Y  = tIAxSBY certainly satisfy 
the required rules (1). The tensor operator formalism merely provides a convenient 
way of handling these representations, and taking account of the grading of the 
representation carrier space. 

The appropriate tool for handling the ‘graded tensors’ is the ‘graded permutation 
groups’. Formally, a graded permutation of a string of objects (bosonic and fermionic) 
may be defined as a permutation, together with a sign factor whenever an odd number 
of fermionic objects is interchanged. Specifically, if XA1. . ’Ar  is a tensor of rank r, a 
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graded permutation 7i acting on X yields another tensor, with sign factor and permuted 
components 

where 7r is regarded as permuting the labels in positions 1 to r. The factor compares 
each pair of labels i < j in the original ordering, and inserts a sign function (negative for 
twol fermisns and positive otherwise) whenever these labels will appear reversed 
( 7 r - l i  > x ,) in the final ordering. 

Clearly, the graded permutation group is isomorphic to the ordinary one; indeed, as 
shown in the appendix, 

- 1  

[(p>)x]A14 = [ ; ( ~ x ) ] A I . . - % .  (6) 
Its utility for the graded tensors lies in the fact that the graded permutations commute 
with the action of the algebra. That is, if we define 

to be the change in X under the actiont of EAB,  then as shown in detail in the appendix, 
(8X)A1... A, = [EAB, XAI...A.] 

[ 7 j ( 8 ~ ) 1 ~ 1 . , , ~ r  = [ a ( + ~ ) 1 ~ 1 , , , ~ r ,  (8) 

( 7 )  

These properties ensure that projection operators onto invariant tensors of definite 
graded symmetry type may be constructed as a product of column and row graded 
symmetrisations and antisymmetrisations. For example, for rank one, two and three, 
we have 

0 
U3 

E 

EF 
EF 

m 

These tensors possess graded versions of the usual symmetries and cyclic identities; for 
example, 

AABC = -[BA]ABAc = -[BC]AACB = [AC][BCIACAB 

t Strictly the complete transformed operator X '  = exp(+8EAB)X exp(-6EAB) should be considered, where 
8 is an infinitesima! anticommuting parameter; however, S X  in (7)  is the essential quantity which must 
commute with 6 E S.. 
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MABC + [ABI[AC]MBCA + [BC][AC]MCAB = 0. 

The dimensions of such tensor representations may be obtained from the U(m) x 
U(n) reductions, which requires an analysis of the symmetries present with various 
combinations of even and odd indices. Clearly when indices are of one type, all even or 
all odd, the symmetry is simply that of the ungraded tableau or its transpose, respec- 
tively. The complete rule (see appendix) for U(m/n) 2 U(m) x U(n) is 

where the summation on runs over all possible tableaux {A/[} such that the product 
{A/[} . {[} (evaluated by the usual Littlewood-Richardson rule (Hamermesh 1962)) 
contains the tableau {A}. For U(m/l)  2 U(m) X U(1), we have 

since the only non-vanishing U(l)  tensors are the totally symmetrical ones with 
tableaux {k}. Using (9), the dimensions of the tensors of rank two and three may be 
written down in terms of m and n. We have 

U 

U B[m (m - l ) (m - 2) + n ( n  + l)(n + 2) + 3mn (m + n)]. 

Note that the dimensions total (m + n)' and (m + n ) 3 ,  respectively, so that the tensors 
provide a complete decomposition of Cl x U and 0 x 0 x 0. 

Diagrammatic rules similar to (9) and (10) govern branchings in other cases. For 
example, the reductions U(m + v /n  + p )  2 U(m/cc) + U(v/n) and U(my + nv/mv + 
n p )  2 U(m/n) x U(p/v)  are given by (A.6) and (A.7). Furthermore, the usual product 
rule for Young diagrams operates also in this graded case (see appendix). Finally, just 
as in the U(m) 2 SU(m) case (Hamermesh 19621, the tensors cannot be further reduced 
for U(m/n) 2 SU(m/n), although some diagrams become identified, as will be seen 
below. The various branching rules remain the same for SU(m/n) 3 SU(m) x SU(n) x 
U(1), with the U(l)  weight readily identified from the reduction of the basic represen- 
tation. 

Some of the products and branching rules have been given for SU(2/1), SU(4/2) 
and SU(5/1) by Dondi and Jarvis (1979, 1980). Let us here illustrate (A.7) with the 
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following reductions of SU(5/4) 2 SU(2/1) X SU(2/1): 

and so on, the dimensions being given from (1 1). 
So far, we have considered only purely covariant tensors. From (3), however, there 

exist also purely contravariant tensors, which we can similarly reduce into graded 
symmetrised parts. Furthermore one can consider mixed CO- and contravariant tensors, 
and it is easy to show that the trace of such a tensor with S A B  is invariant (the work of 
Jarvis and Green (1979) relied heavily on the representation of the Casimir invariants 
as traces of adjoint operators, namely  EA^, E A X [ X ] E X A ,  . . .). However, in the U ( m )  
and SU(m)  cases, the covariant and mixed tensors are related by modification rules to 
equivalent purely contravariant ones (King 1975). Thus the adjoint representation of 
SU(m) may be regarded as the Young diagram (2, Im-l} or in the more convenient 
mixed form (1, l}, representing the traceless generators in two-index form, related by 
the rank-m alternating tensor, an SU(m) invariant. However, in the U ( m / n )  and 
SU(m/n)  cases, there are no such invariant tensors or modification rules, and in general 
the contravariant, covariant and mixed tensors all correspond to inequivalent 
representations. By analogy with the U(m) and SU(m)  cases, we shall associate 
contravariant tensors with Young diagrams with barred boxes. 

Let us illustrate the foregoing with a simple case study, that of SU(2/1), comparing 
with other published results for this case (Scheunert er a1 1977, Marcu 1980a, b), and 
foreshadowing some of the findings of the superfield analysis to follow in the next 
section. We define the weights in a representation as the eigenvalues of the diagonal 
Cartan subalgebra generators (cf Jarvis and Green 1979). Specifically, for U(2/ 1) these 
are El l ,  E22 and E33 ,  and for SU(2/1) we have, from (2), AI1 = -E 2 - E 3 3 ,  A22 = 
-Ell - E 3 3  and A33 = (2E33 + El1 +E22).  The highest weight is defined in the sense of 
lexical ordering. For later convenience, we shall label irreducible representations not 
by the components of the highest weight, but by the eigenvalues denoted ( j ,  b)H of the 
generators 

2 

acting on the highest-weight vector. 
There are several subclasses of graded Young tableaux of SU(2/1), with differing 

types of SU(2) x U ( 1 )  content and dimension formulae. Consider, for example, the 
totally graded-symmetrical covariant tensor of rank 2 j  whose Young tableau consists of 
a single row of length 2j:  

(2j)- '7. 
The component Xll has highest weight (2j, O/O)  in U(2/1). The irreducible 
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representation of SU(2/1) is thus labelled ( j ,  -j)H and has SU(2) x U(l )  decomposition 

(13) 

and the dimension is [2(2j) + 11. The totally graded-symmetrical contravariant tensor 
of rank 2 j  + 1 

Q j l Y :  (i, -h= w, +(j-i)-/-;, 

has highest weight (0, -2j/ - 1) in U(2/1) corresponding to the component X 3 2 2  . The 
irreducible representation of SU(2/1) is therefore labelled (j, j + 1) with SU(2) x U(l )  
decomposition 

(14) {2j + 1}Y: ( j ,  j + 1 ) H  = j ~ + l +  ( j  + $)I+; 

and the dimension is [2(2j + 1) + 13. These cases {2j} and {2j + 1) or bH = - j H  and 
bH = jH + 1, correspond to the classes I, of Scheunert et a1 (1977). 

Consider next the generic Young tableau 

The highest weight corresponds to the diagram with each box of the first two rows 
replaced by 1’s and 2’s respectively, and the remainder by 3’s. The SU(2/1) label is 
( j ,  b = - j  -q  - p  - 1 ) ~ .  From (9), the SU(2) x U(l )  content is 

{2j + 4 + 1 9  4 + 1, l P } Y  - ( j ,  - j  - 4 - p  - 1 )H 

1 1 
( j ,  b)H=(j-Z)b-f+jb + j b - i + ( j f T ) b - ;  

and the dimension is 4(2j + 1). 
The results for the analogous contravariant (barred) case are 

with identical dimension formula and SU(2) X U(1) content. For these cases, there are 
obviously modification rules like 

{ 2 j  +q + 1, q + 1, lP}  -{2j + 1, lp+q}, (17) 

so that the label q is redundant (although the representations are in general 
inequivalent in U(2/1)). However, it is clear from (15) and (16) that the spectrum of b 
in these cases is b s - j  - 1 or b > j  + 2, respectively. In order to complete the spectrum 
for - ( j )  + 1 6 b 6 ( j  + 1) - 1, it is necessary to go to the traceless, mixed tensor with 
single contravariant and covariant rows: 

{ P , q } - m 7 T  . T I .  
P 1  4 

The highest weight corresponds to the diagram with the q boxes replaced by l’s, and the 
p boxes by 2’s, and the j and b labels are given by 

(18) {p, q}Y - ( % P  +q  - I) ,  $ ( p  -4  + 1) )H .  
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Moreover, since p ,  q 2 1 and 

$ ( p  -q  + 1) = ( $ ( p  + 4 - 1) + 1) -q  = -4 ( P  +4 - 1) + P ,  

it is clear that these cases exhaust the range of b available to the irreducible tensors (the 
cases b = j + 1, b = - j  being ‘forbidden’ since they have a different SU(2) x U(l)  
decomposition from (15)). The relations (15)’ (16) and (18) belong to class I1 of 
Scheunert et a1 (1977). 

A plot of the irreducible tensor representations of SU(2/1) is given in figure 1, 
showingjH (=spin content) against bH. Obviously, the spectrum of bH is discrete. This 
is clear in the case of the totally symmetrical tensors of class I, but in the case of class 11, 
it is natural to expect the spectrum of bH to be infinite and continuous. In the superfield 
realisations of the next section, we shall see that this is indeed the case, while the class-I 
irreducible representations correspond to special ‘contrained’ superfields. 

Dimension (Class 11) 1 i 2 j t 1 1  
L 8 1 2  16 20 
I 

c m n  P m /= 
/ class i 

E 

I I I I I 
0 1/ 2 1 3 / 2  2 

J 

Figure 1. Spectrum of ( j ,  b )  for irreducible tensor representations of SU(2/1). Dimensions 
refer to class I1 only. The class-I tensors of rank I have dimension (21 + 1). 
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It is straightforward to see how the above results on the classification of SU(2/1)  
graded tensors generalise to S U ( m / l ) .  There are again classes I, f and I1 of irreducible 
representations, corresponding to barred or unbarred graded tableaux of m - 1 rows or 
less, or general tableaux with at least m rows. The relations (13) and (14), for classes I 
and T, generalise respectively to 

where A = ZA,, and {A} has p rows. For class 11, for fixed SU(m)  content, including 
mixed tableaux with both barred and unbarred entries, bH attains all half-integral 
values, except for the 'forbidden' values (19). 

As was pointed out above, and demonstrated explicitly for 0 x 0 and 0 x 0 x 0, the 
usual Littlewood-Richardson rule for evaluating Kronecker products in U ( m ) ,  
depending as it does only on the properties of the symmetric group, carries over to 
products of graded tensors in U ( m / n )  and SU(m/n) .  Examples in SU(2/1) ,  with 
corresponding dimensions, are 

I 

4 3 4  8 

n x r n = - I T . T - l + '  +% 1 1 

5 5 9 12 4 

EXJ=m+. 
3 3  8 1  

Obviously, Kronecker products of representations of the same type (barred or 
unbarred) remains of that type, and such products are completely reducible. This 
applies in particular to products of the form I x I and T X ?, but is more generally true. 
However, products such as I x Tor I1 x I1 are likely to yield tableaux not occurring in the 
classification of irreducible tensor representations, if the row sum is too large. Apart 
from possible modification rules, such non-standard tableaux correspond to non- 
completely-reducible representations (which, however, have composition series with 
irreducible factors which may be isomorphic to standard tableaux). 

Examples of tensor products in SU(2/ 1 )  yielding non-completely-reducible 
representations are 

4 4  7 8 1  
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It may be verified that contains an invariant five-dimensional subspace with 

highest weight (1, -l)H associated with the t a b l e a u l j ,  while the four-dimensional 
factor space has highest weight (0 ,  O)ET, not associated with any of the standard tableaux 
of four dimensions with jH = 0 (see figure 1). Similarly, contains a six-dimensional 

invariant subspace with irreducible constituents of highest weight (- i, $), and (0 ,  1)H, 
associated with U and n, with a factor space corresponding to the trivial one- 
dimensional representation. 

EP 

3. Superfields 

For the construction of superfield representations, it is convenient to adopt a Cartesian 
basis for the superalgebras (1) and (2). We shall mainly consider the case of SU(m/ l ) ,  
for which we define 

Q, =A:+' 0" = A",1 
m + l  R o  = $ A", = 

R, = $ ( A p ) a ' ( A a p  - (2/m)SapRo) 

where A p ,  p = 1, . . . , m 2 -  1 are the usual trace-normalised SU(m) matrices, Defining 
(Ao),' = a,', and extending the SU(m) structure constants to include fPqo  = f p o o  = foOo = 
0, the SU(m/ l )  algebra is 

where i, j ,  . . . = 0, 1, . , , , m 2 -  1. The generalisation to SU(m/n) simply involves a 
second set of SU(n) matrices A I . .  . An2-1, but will not be required in the following. 

Superfields are constructed via the induced representation method, whereby in 
general one constructs a representation of a group G from a representation, say A, of a 
subgroup H. Suppose the elements of H have matrix representations [blab in some 
basis of the representation space V,. Consider the decomposition of G into its cosets 
G / H  with some chosen coset representatives x, y ,  . . . . The space of functions 4 on 
G / H  taking values in VA carries a representation of G if we define 

g'$a(x) = [ h - ' l a b 4 b ( Z )  (21) 

where zh is the unique decomposition of g - ' x  into a suitable coset representative and 
an element of H. 

For supergroups, the natural choice of subgroup is the underlying Lie group itself. 
Thus for SU(m/n)  we would have cosets labelled by anticommuting parameters 
(e"", $",), corresponding to group elements exp[i(OaaQa, + oaa6a,)], and superfields 
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4 ( 0 ,  e) over the full superspace. A simpler choice, for SU(m/n), are the (non-simple) 
subgroups i ( m / n )  or A(m/n), generated by R, and oaa or Q,,,_respectively, for which 
the coset representatives are just exp(i@"Q,,) or exp(ioaaea,), corresponding to 
superfields 4(e)  or C$(@). 

Now an irreducible representation of SU(m) x U(1) x SU(n) has a natural extension 
to a representation of &(m/n)  or A(m/n) in which the generators of the Abelian 
subgroup, 6"* or Q,,, are mapped trivially to zero. We shall see the induced 
representations of this type (we shall speak of superfields of type ( A E ,  bE), where A E  
labels the SU(m) representation and bE the U( 1) weight, of the irreducible represen- 
tation of SU(m) x U(1)), provide realisations of the irreducible representations 
corresponding to the unbarred and barred graded Young tableau, and in general 
interpolate between the discrete spectrum of b values available in the tensor represen- 
tations. In the SU(2/1) case, the superfields therefore yield all the irreducible 
representations. We conjecture that this is true for S U ( m / n )  also. 

According to (21), the first stage in the construction of SU(m) superfields &,(e) and &(e) of type (A,  b) is the evaluation of the left group action on cosets. From (20) we 
have, for infinitesimal group parameters r,, ro, q a  and f a ,  

exp(iR,r,) exp(iO"Q,) = exp[iO* (sao - ir, (&!t),o)Qp] exp(iR,r,) 

exp(iq*Q,) exp(iO*Q,) = exp[i(O" + qa)Q,] (22) 

exp(iQ"4,) exp(ie"Q,) = exp[iO" (1 + 13fj)Q,] exp(BA,fR, -Mt9fRo) exp(i@f,) 

where M = 2(m - l ) /m.  Thus, if and bSah are the matrices of the generators R, 
and RO in the irreducible representation (A, b)E of SU(m) x U ( l ) ,  a superfield # J ( e )  of 
type (A, b) has infinitesimal transformation laws 

a 
ae srp#Ja(e) = irp(-tp)ab4b(e) - i r ,P (A,/2): T 4 a  ( e )  

In (22) and (23), use must be made of the corapleteness relation of the matrices A,: 

As is well known in connection with space-time superfields, induced represen- 
tations constructed in this way are of finite dimension because a component expansion 
in powers of 0 must terminate. For SU(m/ l ) ,  the superfields 4, ( e )  of type (A,  b)E are of 
the form 

(24) 
1 

n .  4a(e)=4,+ea4a,+. . . + T e a l m z -  4 ,  [ C Y l . . .  a,,] + * 9 * * 

From (23), the general transformation law of the nth component, with infinitesimal 
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parameters ri, T~ and fla, is 

~ ~ a [ a l . . . a n l  = i r P ( - t p l a  4 b [ a l . . . a , i  +iro(-b -&)Cba[al. . .a, l  
b 

1 + ~ ~ ~ + ~ 4 ~ [ ~ ~ . . . ~ ~ ~ ~ + ~ i  - i rp{ (~~p)a lY4arya2 . . ,o r~~  +. . .) 
+ ( ~ b  + n - 1 ) { 4 a , 4 a [ a l . . . a , - l l  + a  . . } - ( t p ) = b { ( A p ) a n Y j j y 4 a [ u l . . . a , - l ~  + e  1 .I. 

Here the {. . .} stands for a sum of n terms antisymmetrising the indices [a1 . . . a,]. 
The general superfield (24) is of dimension 2" x d E ,  where d E  is the dimension of the 

SU(m) representation A E  (with associated Young tableau {AE}) .  The SU(m) content is 
obviously given by the decomposition of the Kronecker products XF=o {AE x l k } ,  or 
XF=o {IE X ? " - k } ,  if we distinguish conjugate representations by barred tableaux. Now 
it is easilyverified that for each k, { A E X  l k } = { ( l m  + A E ) / l " - k } ,  where ( (1" +AE)}is the 
tableau obtained by adding a column of length m to {AE}. Thus from (lo),  the SU(m) 
decomposition is identical to that of the S U ( m / l )  tensor representation labelled by the 
graded Young tableau { A y }  = ( (1"  +AE)}  or {(I" +IE)}. The highest weight (AH, bH) of 
the superfield is a component of 4a[al...olml and is therefore (AE, b E + h )  or (xE, bE+ 
im). Although the superfield is equivalent to (i.e., has the same highest weight as) a 
symmetrised tensor representation of class I1 only if bE+3m is half-integral, it is still 
useful to associate with it a generalised graded tableau having arbitrary continuous b. 

We saw in (19) that for certain (discrete) values of bH, the graded Young tableaux 
gave rise to representations of class I or f with differing SU(m) structure. For these 
same bH values, the corresponding superfield is decomposable: certain of the 
components form an invariant subspace. This is easiest to see for a scalar superfield, 
with AE the trivial representation. Consider, for example, the subspace of (24) with the 
components of order ( p  + 1) or higher zero, and the remainder non-zero. From (25), we 
have 

(25 )  

&bp+I a [MbE + ( p  + 1 )  - 114". 
The subspace will be invariant as claimed if MbE is equal to -p .  The irreducible 
representation obtained is equivalent to the tensor of class I with graded tableau { l"} ,  
and highest weight MbH = -p /m,  as required by (19). These decompositions of the 
scalar superfield were demonstrated by Dondi and Jarvis (1980). 

For a general superfield (AE, b ~ ) ,  consider, for example, the subspace with 4 " and 
4"-' zero, except for the irreducible component {Im-' +AE} of the latter. Writing 

4a[q ...or, I= €a1. . .am4a 

4 a [ u l . . . a , - l ~ -  ea1 ...a,,- Ida"' 
- 

in (25) ,  we have (suppressing indices a and 6) 

84 f , [ ( M b ~  -k m - I)-(&. ApT)]'p4p. (26) 

The only dangerous term involves the unconstrained component of r$ap. However, on 
this subspace, the eigenvalue of - - ( tP .  A/)  is given in terms of the Casimir invariants as 

- ( t p .  /\,')=C2{lm-1+A~}-C~{i}-C2{A~} (27) 
where 

m 

2Cz{A}= 1 h r ( A , + m + l - 2 r ) - ( h ~ ) ' / m  
r = l  
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with 

From (26) and (27) we find 

t p .  A:= -hE/m 

or (28) 
MbE=-AE/m -(m-1). 

In terms of the highest weight (AH, b H )  = (l"-'+AE, bE+&(m - l ) ) ,  (28) becomes 
MbH = -hH/m, are required by (19), for class-I representations. 

A similar calculation ensues for the superfield (iE, bE), and the subspace with 
qbm, qbm-' zero except for the irreducible component {XE-Tm-'} of the latter. On this 
component, 

The highest weight is (AH, bH) = ((xE-im-'), bE+$(m - l ) ) ,  and (29) becomes MbH = 
hH/m + ( m  - l), in accord with (19), for class-T representations. The proofs, that (28) 
and (29) suffice to ensure the vanishing variation of the remaining components, can be 
completed similarly. The irreducible representations of SU(m/ 1) so afforded cor- 
respond to the graded Young tableaux {Im-' + AE} and {iE}, respectively. 

There will obviously be several different choices of bE capable of decomposing a 
given (non-scalar) superfield (AE, bE). In all cases, such constrained superfields will 
correspond to one of the graded Young tableaux of class I or 1. We forego further 
details in favour of a complete investigation of the case m = 2, to which we now turn. 

For SU(2/1), the superfield expansion (24) may be written (with external spinjE = j )  

qba(e) = A ,  + e"B,, + $ e " i e " Z  E w q F a .  

7T+ = [ ( j +  1 ) +  t .  a ] / ( 2 j +  1) 

t . a = j r + - ( j + l ) r r - m  

Upon introducing the spin-j f $ projection operators T*,  defined by 

7 T -  = ( j  - t . a ) / ( 2 j  + 1) 

the 7, .;i component transformations (25) can be written 

SA, = 7 a ~ : a  + ?"B, 

SB;" = 7 ~ : ~ ' j j p F b  + ( b  -j)7T:abpflpAb 

8B, = b p j j f l b  + ( b  + j + 1)~:" bPfpAb 

SF, = - f j"(b + j  + 1)B:" - fj"(b - j)Bia.  

Obviously a general (unconstrained) superfield has dimension 4(2j + l), corresponding 
to a class-I1 graded Young tableau {12+2j} (but with arbitrary b ) .  It can be seen, 
however, that two types of invariant subspace, I and 1, of {A,, B&, B:", Fa}, arise: 
{Aa, 0, B:,, 0 )  and label ( j ,  - j -  l)E, or {A,, B,, 0, 0 }  and ( j ,  j ) ~ .  The highest-weight 
labels are therefore (j + 1, - j  - $), and ( j  - $, j + $)H, corresponding respectively to the 
graded Young tableaux {2j + 1) and {%I. Correspondingly, the factor spaces by these 
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invariant subspaces, with components of the form {. . . , B,, . , . , F,} and 
{. . . , . . . , B:a, F,}, have highest-weight labels ( j ,  - j l H  and ( j ,  j + l)H, again cor- 
responding to class I and 7, respectively (but with differing tableaux ( 2 j )  and {2 j  + 1)). 

4. Conclusions 

The diagram and superfield techniques introduced generalise familiar techniques for 
constructing representations of the Lie superalgebras. Tt can be expected that similar 
methods will apply also to osp(m/n), p ( m )  and q ( m ) ,  which we have not discussed in the 
present work. In these cases there is the possibility of projecting on to traceless 
subspaces by means of the appropriate metric, to provide a further decomposition of the 
symmetrised tensors. 

The subject of Kronecker products could, of course, be pursued in the superfield 
framework. Here, products such as q5(f3) x (e) give rise lo noncompletely reducible 
representations. These properties obviously persist in the other superalgebras (except 
for the case of osp(l /n) :  see, for example, Corwin (1976)). However, the very simple 
nature of the composition series for the SU(2/1) examples mentioned suggest that here, 
too, diagrammatic methods may be appropriate. 
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Appendix. Graded permutations 

Here we prove the assertions of § 2 concerning the relationship between the graded 
permutation group, graded Young tableaux and tensor representations of the classical 
superalgebras. 

Consider (6). The sign factor associated with the left-hand side is 

- 1  -1 i Cr P 1 2 G -  P I 

while that associated with the right-hand side is by definition 

Inserting separate products over a- 'p - ' i  5 v - ' p - ' j 9  the first factor becomes 

and similarly changing k, 1 to f l i ,  p- ' j ,  and inserting separate products over i 5 j the 
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second factor becomes 

The second term in (A.3) cancels the identical first term in (A.2), and the remaining 
terms may be combined, yielding (A.l)  as required. 

Equation (8) is proved most simply by taking the case of a transposition 7 of adjacent 
labels, say Ai and Ai+l .  The only terms of (8) which are not manifestly identical on the 
left- and right-hand sides are those involving substitutions of Ai and Aitl  by A in the 
action of EAB on X .  On the left-hand side these are, for example, 

and on the right-hand side 

. . . +,AAl][ AA1 B J a A i + l B x A 1  Ai 1AAZ AV +. . . , 

with similar terms involving SAXa. It can be verified in each case that, in the presence of 
the SAi+lB factor, the sign factors become identical, and (8) is proved for transpositions 
of adjacent elements, However, since any permutation may be expressed as a product 
of such transpositions, it is true in general. 

Corresponding to an irreducible representation of the permutation group labelled 
by a Young tableau {A}, the operator 

(where d is the dimension of {A} in S,, and ,yfA' the irreducible character), has the 
property of projecting onto invariant subspaces of the tensors of rankr  of definite 
graded symmetry type {A}, by analogy with the usual case (Hamermesh 1962). 
Obviously, if the tensor indices all happen to be even, the symmetry type is precisely {A}. 
If the indices are all odd, the sign factor of 6 is just the signature of T,  the character of 
the antisymmetric representation {lr}, and the symmetry type is that of the transposed 
tableau {A}, since {A} 0 (1') ={A} in S,  (Hamermesh 1962). Intermediate cases will have 
subsymmetries of the odd and even indices, depending upon {A} and the number of 
indices of each type. 

The close analogy with the usual treatment of symmetrised tensors in the ungraded 
case extends to the reduction of products and the evaluation of branching rules, since 
these depend only upon the permutation group, and are unaffected by the presence of 
6, rather than 7 ~ ,  in (A.4). Thus the Kronecker products in U ( m / n )  are governed by the 
usual (Littlewood-Richardson) rule for the outer Kronecker product (.) of represen- 
tations of the symmetric group (Hamermesh 1962) 
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where the {v} are constructed by regular application of boxes. Conversely, the 
branching rule U ( m  + v / p  + n )  3 U ( m / p )  x U ( v / n )  is given by (cf King 1975) 

{AI=C { A / J I X { J I  (A.6) 

where the summation is over all possible { J } ,  and { A l l }  = C KtY{v} ,  the usual division 
rule. For the special case ,LL = v = 0, because the second factor relates to the symmetry 
of odd indices, the reduction (9) is found, which also yields the dimension formula for 
these symmetrised tensors. 

For the branching rule U ( ~ F  + nu/mv + n k )  2 U ( m / n )  X U( ,LL /V) ,  the relevant 
operation is that of the inner Kronecker product (0) of representations of the symmetric 
group S,. We have (Hamermesh 1962, King, 1975) 

{ i )  

where r is the rank of {A}. 

only on the symmetric group (e.g. plethysms) also carry over to the graded case. 
It should be clear from our analysis that other diagram manipulations which depend 
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